Latest research news are now in your pocket

Wednesday, 7 March 2018

1.6 Billion Years Old breath discovered from India

1.6 million years of old bacteria was found from the pockmarks in rock found from central India. A research that published in the journal Geobiology identified most of the microbes are cyanobacteria. These ancient one of the oldest bacteria identified till now are capable to synthesize photosynthesis like modern plants using sunlight as energy and giving out oxygen as byproduct. This cyanobacteria are the earliest life forms paving away 2.4 billion of years ago started to supply oxygen to earth.

Fossilized bubbles formed by cyanobacteria on 1.6 billion years old fossilized mat obtained from Vindhyan Supergroup, central India. Credit: Stefan Bengtson. (Source PhysOrg)
Cyanobacterial excreted materials harden into several layers to form stromatolites. These stromatolites are found in very few places now. Therese Sallstedt, a biologist from Swedish Museum of Natural History with her colleagues has studied these rocks from Vindhyan Supergroup which might contain oldest fossils on earth.

In rock layers scientists found tiny spherical voids which was not ever found before. Researchers in their paper mentioned that in fossil microbial mats that thrive now are in hydrothermal water.

The bubbles are as small as 50 to 500microns which for comparison human hair is just 50micron in diameter. Some of the spheres were found to be squished which signify that they were once compressed before they formed rock. It is important to note that researchers also found filament structures which are probable remains of cyanobacteria.

The mats were once filled with oxygen as was produced by old cyanobacteria. The stromatolites contain higher concentration of calcium phosphate called phosphorites. Hence the discovery of oxygen bubbles within these phosphorites produced by cyanobacteria is a major discovery of early life.

Journal Source:

Sallstedt T, Bengtson S, Broman C, Crill P, Canfield D. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Geobiology. 2018;16(2):139-159.
Share:

Tuesday, 6 March 2018

Video: How Bacteria Rule Over Your Body


The video here is adopted from the animation house of Kurzegat which is just as short as 8mins to explain how bacteria is associated with our health, feelings and even it allows us to crave for junk food.

Image: DiabetesDaily

Points to follow in the video:
1. Healthy microbiome is directly influence to our healthy immune system.
2. World of different microorganisms in our gut.
3. Know how microbiome can make us happy and sad.
4. Microbiome can influence our diet.
5. How to cure disease by fecal transplants.



Share:

Best Universities in Europe 2018 Rankings

Do you want to study in Europe? Then find out this year's best Universities of Europe as ranked by Times Higher Education.

Image Source: Times Higher Education

When we say Europe now its with and without UK.

Here are the top ten Universities ranked by Times Higher Education including UK:
1. University of Oxford, UK
2. University of Cambridge, UK
3. Imperial College London, UK
4. ETH, Zurich, Switzerland
5. University College London, UK
6. London School of Economics and Political Science, UK
7. University of Edinburgh, UK
8. LMU Munich, Germany
9. King's College London, UK
10. Ecole Polytechnique Federale de Lausanne, Switzerland
10. Karolinska Institute, Sweden

Here are the top ten Universities ranked by Times Higher Education excluding UK:
1. ETH Zurich, Germany
2. LMU Munich, Germany
3. Ecole Polytechnique Federale de Lausanne, Switzerland
4. Karolinska Institute, Sweden
5. Technical University of Munich, Germany
6. Heidelberg University, Germany
7. KU Leuven, Belgium
8. University of Amsterdam, Netherlands
9. Humboldt University of Berlin, Germany
10. Delft University of Technology, Netherlands.

Courtesy: Times Higher Education.
Share:

Thursday, 1 March 2018

How fruit juice affects the gut.


It was previously believed that fructose, which is the sugar found in fruit and fruit juice, is processed by the liver. However, a new study suggests that fructose is mainly processed in the small intestine. The study, which is published in the journal Cell Metabolism, reveals that processed high-sugar food and drink only spills over into the liver for processing when the small intestine becomes overwhelmed.
The recent findings add to the body of scientific knowledge on the effects of too much fructose on the body. We know from previous research that excessive consumption of sugar is harmful to the liver, and that chronic overconsumption causes obesity, increases resistance to insulin, and creates conditions for the onset of diabetes. Sometimes in the past, Medical News Today reported on a study that found that fructose-containing products such as sweetened drinks can increase the risk of non-alcoholic steatohepatitis, a form of non-alcoholic fatty liver disease, "which can lead to cirrhosis or liver cancer.”
OBSERVATION OF FRUCTOSE DIGESTION IN MICE
The researchers, from Princeton University in New Jersey, used mice to study how fructose travels through the digestive system. Their findings suggest that there is a physiological difference in how the body processes different amounts of sugar. Rather than the liver processing all the sugar in the body, the team observed that more than 90 percent of fructose was processed in the small intestines of the mice in the study. The team found that fructose not absorbed into the small intestine is passed through to the colon, where it comes into contact with the microbiome, which is the microbiotic flora that inhabits the large intestine and colon.
The researchers explain that the microbiome is not designed to process sugar. So, while a person could eat a large amount of carbohydrates without exposing their microbiome to any sugar, this changes significantly when high-sugar products — such as soda and juice — are consumed. While the findings do not prove that fructose influences the microbiome, the team believes that "an effect is likely." They suggest that this link should be further investigated in future studies, as it may provide new insights into the adverse effects of high sugar intake.
In the study, the small intestine was found to clear fructose more efficiently after a meal. The team theorizes that during periods of fasting, such as in the morning or mid-afternoon, individuals may be more vulnerable to fructose as the small intestine has reduced ability to process it during these times. As study author Joshua D. Rabinowitz, of the Lewis-Sigler Institute for Integrative Genomics at Princeton University, explains, "We can offer some reassurance — at least from these animal studies — that fructose from moderate amounts of fruits will not reach the liver." "We saw that feeding of the mice prior to the sugar exposure enhanced the small intestine's ability to process fructose," Rabinowitz continues. "And that protected the liver and the microbiome from sugar exposure."
Rabinowitz says that the results support "the most old-fashioned advice in the world," which is to "limit sweets to moderate quantities after meals" and avoid sugary drinks outside of meal times.

Share:

Parasitic Molecules Mimic Human Proteins & Chew through the Gut

One of the most common gastric diseases in the world is due to a parasitic infection from Giardia parasites. New research has revealed how these pathogens cause gut distress; they appear to mimic human molecules, then break gut cells down and consume them as food. This solves a mystery that has eluded scientists for over 300 years. The findings, by investigators at the University of East Anglia, has been reported in GigaScience. 
The Giardia parasite synthesizes two proteins that enable it to break through the layers of mucosal protection in the gut, cutting a barrier that maintains gastrointestinal health. The process allows the pathogen to get to the nutrients behind the gut barrier easily. Typically, the Giardia parasite gets into people through contaminated drinking water or food, causing the disease giardiasis. Rates may be as high as seven percent in high-income nations and thirty percent in low-income countries.
The researchers were interested in knowing why the parasite causes very serious problems for some people. The team at the National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections of UEA's Norwich Medical School collaborated with colleagues from the Institute of Infection and Global Health at the University of Liverpool. They found that when giardia infected cells in culture, two protein families were made by the parasite. Further study indicated that one of those families can mimic human proteins called tenascins.
Tenascins are critical for tissue health under normal conditions. They control cell adhesion after wounds and direct tissue remodelling. They aid cells that must break apart, as well as regulating the proteins that hold cells together. The parasite appears to have evolved to make proteins that can behave similarly to human proteins, to interfere with these processes. The tenascins that giardia makes don’t hold cells together, however. Instead, they disrupt the junctions keeping cells together and prevent them from healing. "We've discovered an entirely new model for how this disease develops in the gut - which can also explain why in some people the symptoms can be more severe. Because the giardia have broken down the cell barriers and made all these nutrients available, other, opportunistic bacteria can move in to take advantage of these 'ready meals' which can make giardiasis even more severe for some,” said the senior author of the work, Dr. Kevin Tyler of the Norwich Medical School at UEA. "Giardia was one of the very first disease-causing microbes to be visualized - scientists have known of its existence since 1681. But this is the first time we have been able to properly understand why this parasite is so successful," he continued.

The team plans to pursue the research further; next, they want to see if these proteins can be neutralized as a therapeutic for the illness. They are wondering if differences in those molecules might indicate which strains are causing more severe illnesses, something not currently known.

Written by Carmen Leitch.
Share:

Memory can be boosted by Prebiotics.


By adding prebiotics to infant formula, a group of researchers have enhanced the cognitive performance of piglets. The findings back up earlier work and suggest an important role for prebiotics in brain development. Anyone who has had children will have heard the phrase "breast is best." This is a given, but, for a wide range of reasons, not every mother can breast-feed their baby. For this reason, it is important that infant formula provides the best start in life and mimics the incredible capabilities of breast milk as closely as possible. Already, infant formula is a good substitute, but there is always room for improvement when you are competing against Mother Nature.

Breast milk naturally contains prebiotics, which are small, indigestible fiber molecules; they provide a welcoming environment for gut bacteria. Having the gut colonized by bacteria early in life is important for the developing immune system and helps prevent infections. Also, studies have shown that adding prebiotics to infant formula can help improve intestinal function and reduce allergies. A recent study from the University of Illinois' Piglet Nutrition and Cognition Lab investigated what effects adding prebiotics to infant formula might have on pigs. Specifically, they wanted to know whether it would enhance memory and exploratory behavior.

REASONS FOR USING PIGS

Using rats and mice to investigate drugs or biological mechanisms is a well-known and incredibly useful method. However, piglets are more similar to baby humans than rodents are. Their behavior, their digestive systems, and even the way their brain develops re much more similar to us than we are to rats. Although adding fiber to a piglet's diet to alter the workings of the brain might seem strange, evidence is already mounting that our gut bacteria play an influential role on our mind and mood.
One of the researchers, Stephen Fleming, says, "There hasn't been a lot of work looking at the gut-brain axis in humans, but a lot of rodent work is showing those connections." For instance, in one study, rodents fed prebiotics shortly after birth displayed increased positive social interactions and improved memory. For the new research, 2-day-old piglets were fed infant formula based on cow's milk supplemented with galactooligosaccharide (GOS), a naturally occurring prebiotic, and polydextrose (PDX), a synthetic carbohydrates with prebiotic activity. When the piglets were 25 days old, they were put through their paces in a range of learning, memory, and stress tests. After 33 days, blood, brain, and intestinal tissue were collected for examination.
To find out whether the prebiotics were having an effect on gut flora, the researchers tested for volatile fatty acids (VFA). Bacteria excrete VFA's as they digest prebiotics, so increased levels indicate increased numbers of bacteria. As expected, in the pigs that were fed PDX and GOS, VFAs were increased in the blood, brain, and colon. It is possible that VFAs could be involved in gut bacteria's influence on our brain and behavior. However, in the current study, the expected change in stress-related behavior was not found; despite measuring changes in VFAs, no connection was seen in behavior.
The researchers were also surprised to find that, in the pigs fed the prebiotic, Serotonin levels in the hippocampus went down. "When you hear less serotonin, there's an immediate reaction to say, 'Well, that's bad,'" Fleming says. But that's not necessarily the case; the pigs didn't display any greater anxiety during stress tests, for instance. This drop in serotonin may have been because of reduced levels of tryptophan, the precursor of serotonin. More research is needed to explore this further. Although the study could not find an alteration in behavior, they did show that the pig's memory was improved by prebiotics. As part of the growing evidence of gut bacteria's impact on brain function, the results make an interesting read. "There are so many ways we can alter the composition of the microbiota and they can have very strong benefits. Promoting good 'gut health' remains a strong focus in the field of nutrition" says study co-author Ryan Dilger, associate professor in the Department of Animal Sciences at the University of Illinois in Chicago. As Dilger says, there is a great deal of interest in gut bacteria's influence on the brain. More work is sure to follow in hot pursuit.

Adapted from Tim Newman


Share:

Monday, 26 February 2018

Pathogen identified that was known to have caused 1545 epidemic in Mexico

Archeologists have provided us several clues for several early human history and the massive epidemics that were caused by some of the pathogens. Researchers use several techniques to analyze DNA and provide with enormous information about the causes of epidemics that happened over 500years ago.

Image: Obtained from Pixabay
Similarly from corpse excavated from a cemetery Teposcolula-Yucundaa located at Oaxaca in southern Mexico, traces of ancient DNA of Salmonella enterica subspecies serovar Paratyphi C was identified. A recent paper published in the journal Nature Ecology and Evolution led by equal contributors Åshild J. Vågene and Alexander Herbig suggest that this bacteria which caused enteric fever might be the same pathogen that was known to have caused 1545 epidemic in this community.
Researchers used a new metagenomic analysis tool called MEGAN alignment tool orMALT to identify this pathogen traces. Modernization of sophisticated techniques of DNA extraction and sequencing has provided easy identification of microbes and phylogenetic analysis from their DNA obtained from remnants of teeth and bones.

Tooth samples which were obtained from the corpse were used to identify both pre-contact and post-contact with the pathogen. The DNA were extracted and were sequenced which then was compared with the bacterial genome database available from NCBI. Additionally researchers with the help of archaeologists took soil samples to assess the background DNA.

The MALT was used to perform alignment and analysis of DNA sequence data. MALT has similar function like BLAST tool used to compute alignment of highly conserved sequence but unlike BLAST, MALT make these computations faster.

Results show that all the samples obtained from individuals from post-contact burial site aligns DNA with S. Paratyphi C DNA and unlikely there are no matches found with pre-contact burial site.

As the study compared only DNA samples from individuals excluding the RNA genomes, hence scientists consider themselves quite far from seeing the whole epidemic picture. Researchers now consider studying the multiple pathogens circulating at that time to have the synergistic effect on the population. This research thus provide insights about the presence of certain pathogens at that time and place of the epidemic but still further understanding is required to analyze the full story.

Journal Source:

Vågene Å, Herbig A, Campana M, Robles García N, Warinner C, Sabin S et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature Ecology & Evolution. 2018;2(3):520-528.
Share:

Copyright © We The Microbiologist Research News | Powered by Blogger
Design by SimpleWpThemes | Blogger Theme by NewBloggerThemes.com